Warning: include_once(/pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/config.php) [function.include-once]: failed to open stream: No such file or directory in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/main.php on line 4

Warning: include_once() [function.include]: Failed opening '/pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/config.php' for inclusion (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/main.php on line 4

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=config&host=dp-2013.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/WapClick.php on line 79

Warning: file_get_contents(AGG_UPDATE_PATH?key=AGG_CODE_KEY&type=ip_list&host=dp-2013.ru) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/WapClick.php on line 80

Warning: file_get_contents(AGG_CONFIG_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/WapClick.php on line 90

Warning: file_get_contents(AGG_IPLIST_PATH) [function.file-get-contents]: failed to open stream: No such file or directory in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/WapClick.php on line 45

Warning: Invalid argument supplied for foreach() in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/WapClick.php on line 47

Warning: Cannot modify header information - headers already sent by (output started at /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/main.php:4) in /pub/home/andrekon21/dp-2013/tfdgbsd6435hhjmkhgi8/main.php on line 9
Булевы функции Методика расчёта линейных электрических цепей Метод контурных токов Расчёт трёхфазной цепи Расчет методом эквивалентного генератора Расчет методом контурных токов

Курс лекций по теории электрических цепей (основы электротехники). Примеры расчеты цепей

Основные операции и элементы алгебры логики.

Основой построения любого устройства, использующего цифровую информацию, являются элементы двух типов: логические и запоминающие. Логические элементы выполняют простейшие логические операции над цифровыми сигналами. Запоминающие элементы служат для хранения цифровой информации (состояния разрядов кодовой комбинации).

Логическая операция состоит в преобразовании по определенным правилам входных цифровых сигналов в выходные. Математически цифровые сигналы обозначают поразрядно символами, например x1, x2, x3, x4. Их называют переменными. Каждая переменная может принимать значение "0" или "1". Результат логической операции часто обозначают F или Q. Он также может иметь значение "0" или "1". Математическим аппаратом логики является алгебра Буля. В булевой алгебре над переменными "0" или "1" могут выполняться три основных действия: логическое сложение, логическое умножение и логическое отрицание. Импульсные цепи Общие сведения В современных электронных устройствах, системах связи, автоматического управления и вычислительной технике информация часто передается в виде электрических импульсов различной формы.

Логическое сложение (дизъюнкция или операция ИЛИ) записывается в виде

Правила выполнения операции ИЛИ заключаются в следующем:

0 + 0 = 0; 1 + 0 = 1;

0 + 1 = 1; 1 + 1 = 1.

(17.1)

Логические схемы, реализующие операцию ИЛИ; называют ячейками ИЛИ. Их схемное обозначение приведено на рис. 17.1а. Простейшая реализация логической ячейки ИЛИ на диодах приведена на рис. 17.1б. Напряжение на выходе схемы будет равно E (F=1), если хотя бы на один из входов будет подан единичный сигнал. Вольт-амперная характеристика p-n перехода Если к p-n переходу подвести внешнее напряжение так, чтобы направление внешнего электрического поля совпало с направлением внутреннего электрического поля перехода, т.е. подключиться минусом к р- области и плюсом к n-области, то это приведёт к увеличению напряжённости электрического поля в p-n переходе и к увеличению высоты потенциального барьера до величины φ0+Е

Логическое умножение (конъюнкция или операция И) записывается в виде

Правила выполнения операции И заключаются в следующем

   (17.2)


Логические схемы, реализующие правила (17.2), называются ячейками И. Их схемное обозначение приведено на рис. 17.2а. Простейшая реализация логической ячейки И на диодах приведена на рис. 17.2б. Напряжение на выходе  только в том случае, если все диоды будут закрыты, т. е. на всех входах будет потенциал Е (логическая 1). В противном случае открывшийся диод шунтирует нагрузку и .

Логическое отрицание (инверсия или операция НЕ) записывается в виде

и читается: F равно не x. Правила выполнения операции НЕ заключаются в следующем

   (17.3)

Логические схемы, реализующие правило (17.3) называются ячейками НЕ. Их графическое обозначение приведено на рис. 17.3. Операция НЕ может быть реализована схемой транзисторного ключа.

Рассмотренные логические правила и схемы позволяют реализовать сколь угодно сложную логическую функцию. Например, функция

реализуется пятью логическими элементами, в том числе два элемента И, два элемента НЕ и один элемент ИЛИ (см. рис. 17.4).

Все логические элементы выпускаются в микросхемном исполнении. Они входят в состав всех серий цифровых микросхем и имеют следующие условные обозначения:

элементы "ИЛИ" – ЛЛ;

элементы "И"  – ЛИ;

элементы "НЕ" – ЛН.

Например, микросхема К555 ЛИ1 имеет в своем составе 4 элемента "И" на два входа каждый.


Основные теоремы алгебры логики.

Теоремы для одной переменной охватывают все операции над переменной x и константами "0" и "1":

Теоремы для двух или более переменных – x и y:

Переместительный закон:

   

Сочетательный закон:

Распределительный закон:

  Доказательство:

 

 Здесь к скобке применена теорема 2.

Закон поглощения:

 Доказательство:

 

 

 Доказательство:

 

Закон склеивания:

  Доказательство:

 

Закон отрицания (теорема де-Морана)

Минимизация булевых функций Булевы функции в СДНФ и в СКНФ обычно избыточны. Поэтому этапу построения схемы должно предшествовать упрощение формул или минимизация. Цель минимизации – получить минимально необходимое количество логических элементов в схеме. В основу минимизации положены правила и законы булевой алгебры

Комбинационные устройства Комбинационными называются логические устройства, выходные функции которых определяются входными логическими функциями в момент их воздействия. К комбинационным устройствам относятся шифраторы, дешифраторы, преобразователи кодов, мультиплексоры и демультиплексоры, сумматоры и компараторы.


Генераторы линейно изменяющегося напряжения